top of page
Search

The BIM Knowledge, Skills & Behaviors that AECO Discipline Students Must Possess

Updated: Jun 27, 2019


Introduction

AECO industry is inclined towards employing graduates with exposure to BIM tools, techniques and processes. In line with today’s AECO industry necessities, universities are running a wide range of BIM courses, for exposing AECO students to this new paradigm shift. However, today's academic BIM education is not completely integrated with other AECO programs in Tertiary Education System (TES). BIM education in academia has a history of almost two and half (2.5) decades. The development of BIM teaching in universities from 1990s to date can be visualized as in Figure 1.


Figure 1: Evolution of BIM education in academia

Georgia Institute of technology in USA has carried out research in BIM i.e. TAMU project since the early 90s. Also, their architecture programs were those first showed interest in this area. In line, Stanford University in 1993 integrated BIM into curriculum by introducing interdisciplinary and distant collaboration for their discipline students. Here, students worked in geographically distributed multi-disciplinary teams to learn about cross-disciplinary impacts, integration issues, usage of collaboration technologies, team dynamics, collaborative work, and the impact of collaboration technologies on organization performance. Witnessing the benefits of BIM technology and processes for AECO industry, several universities globally had incorporated BIM to their curriculum by 2003. Around 2004, teaching the students on BIM concepts, tools and techniques was seen as an important part of AECO programs. And, BIM education was delivered for students as a single course in majority of the universities. Approaching to the year 2006, few universities made an effort to experiment for delivering BIM education with intra-course collaboration by integrating AECO discipline students. Reflecting the benefits of intra course, from the year 2006-09, several universities started introducing BIM course in their curriculum with collaboration types such as distance and interdisciplinary. By the year 2010, inter-level, trans-disciplinary and multinational collaboration had become the trend for BIM course delivery (Barison & Santos 2012b). However, most of the universities had introduced BIM education in only one subject-area and few attempts to stimulate the integrated practices.


Besides these programs, Project Based Learning (PBL) lab established by Dr. Renate Fruchter at Stanford University is a pilot model to demonstrate on how construction educators might teach and enable students to practice team collaboration in a global framework (Becker et al. 2011). BIM Academic Forum (BAF), a group of representatives from a large number of UK Universities and BIM task group, was established in late 2011. BAF was established to respond for AEC industry’s BIM adoption and to promote the academic aspects of BIM in the UK. To fulfill the optimum requirements for BIM teaching among Higher Education Institutions (HEIs) in the UK, a BIM assessment matrix was also developed by BAF (Underwood & Ayoade 2015). The UK has stepped ahead in promoting BIM education in most of the Universities at UK, thereby benefiting all adopters i.e. HEIs, students and AECO industry. Recently, Gier (2015) has also evidenced that BIM education is trending towards trans-disciplinary, inter-level and multinational collaboration with process and technology field players, considering that students need to collaborate with actual industry professionals on real cases.


Research analysis on global trends in BIM education by reviewing the BIM publications reveals that, BIM is not just an addition to the original AEC curriculum, but as a catalyst enabling education reform for AECO associated disciplines. Academia demands for the revision of old AEC curriculum to cope up with industry needs. Project based learning and Computer-Medicated Communications (CMC) combined together can support this paradigm shift. And, several universities have realized that, BIM should be thought as a tool/technique and process to produce BIM-ready graduates (Barison & Santos 2012b). Another key question for AECO specialty educationalists and researchers is how to design courses in which BIM technology enriches teaching rather than substitutes for it?


Efforts have already been undertaken by active BIM academicians/educationalists in Brazil and Australia to assist students and professionals on specialized BIM skillsets (Gardner et al. 2014; Barison & Santos 2010a, 2011, 2012a, 2013). In our standpoint, future AECO discipline students need to be trained with these new skills and technological competencies to address the upcoming challenges. Dossick et al. 2015 and Hsieh et al. 2015 study reveals that BIM education in academia benefits AECO discipline students to gain BIM knowledge by adopting latest practice such as trans-disciplinary, inter level and multinational collaboration with AECO industry professionals and academia. Above discussed innovative practices in universities support the delivery of quality BIM education in TES.


Different AECO industry specialists need distinct BIM knowledge and skillsets. AECO students, who will be future BIM specialists, need to be trained to acquire such essential competencies. Here, the term BIM specialist refers to any of BIM modelers, BIM analysts, BIM application/software developers, BIM managers/coordinators, BIM consultants, and BIM researchers. BIM educationalists train these future specialists with the unique BIM skillsets required by adopting certain training techniques. The basic skillsets that AECO discipline students must possess are identified in our study and it is visualized in Figure 2. To start with, students must be able to visualize AECO projects with different views and perspectives. Second, students should acquire professional and ethical responsibilities. Third, students must be capable to design, test, analyze and interpret data. Fourth, they must acquire a brief knowledge on contemporary issues, e.g. climate change. Fifth, students need to understand on impact of engineering solutions in global, economic, environmental and societal context. Sixth, students must have an ability to use recent AECO industry tools and techniques to successfully accomplish real project case. Seventh, students must be able to recognize and resolve complications that occur in present day projects. Eight, is that students must be capable enough to Collaboration, Communication, Coordination (CCC) effectively on multidisciplinary AECO teams and projects. And last but not least, students must be able to understand the relationships between people, products and processes.


Figure 2: Knowledge, skills and behaviors that AECO discipline students need to possess

Along with this basic knowledge, skills and behaviors stated above, AECO students must possess distinct BIM knowledge and skillsets to be a BIM ready graduate as stated in this section. BIM knowledge and skillsets such as, technical (modelling, drafting, and model management), operational (designing, simulating, and quantifying), functional (collaboration, facilitation, and project management), implementation (component development, standardization, and technical training), administrative (tendering and procurement, contract management, and human resource management), support (data and network support, equipment, and software troubleshooting), managerial (leadership, strategic planning, and organizational management), and R&D, i.e. change management, knowledge engineering, and industry engagement (Succar & Sher, 2013; Amarnath et al. 2016). BIM educationalists train these future BIM graduates with the unique BIM skillsets required by adopting certain training techniques. `BIM-ready’ graduates with the knowledge base, skill sets and behaviors outlined above will be suitable for today’s AECO industry to effectively deliver projects.


References

Amarnath CB, Chang, Y.T. and Hsieh, S.H., 2016. A review of tertiary BIM education for advanced engineering communication with visualization. Visualization in Engineering, 4(1), pp.1-17.

Barison, M. B., & Santos, E. T. (2010a). "An overview of BIM specialists". In proceedings of the International Conference on Computing in Civil and Building Engineering (icccbe2010), Nottingham, UK, Nottingham university Press.

Barison, M. B., & Santos, E. T. (2011). "The competencies of BIM specialists: a comparative analysis of the literature review and job ad descriptions". In proceedings of International Workshop on Computing in Civil Engineering, ASCE, Reston, VA.

Barison, M. B., & Santos, E. T. (2012a). "A Theoretical Model for the Introduction of BIM into the Curriculum". In Proceedings of 7th International Conference on Innovation in Architecture, Engineering and Construction (AEC 2012), 15-17th August, Brazilian British Centre, São Paulo, Brazil.

Barison, M. B., & Santos, E. T. (2012b). BIM Teaching: Current International Trends. Ensino de BIM: tendências atuais no cenário international, 6(2), 67–80.

Barison, M. B., & Santos, E. T. (2013). "Educational Activities for the Teaching-Learning of BIM". In proceedings of I BIM International Conference (BIC 2013), 20-21st June, Porto, Portugal.

Becker, T. C., Jaselskis, E. J., & Mcdermott, C. P. (2011). "Implications of Construction Industry Trends on the Educational Requirements for Future Construction Professionals". In proceedings of 47th ASC Annual International Conference. Omaha, Nebraska, United States, 6-9th April.

Dossick, C. S., Homayouni, H., & Lee, G. (2015). Learning in Global Teams: BIM Planning and coordination. International Journal of Automation and Smart Technology, 5(3), 119-135.

Gardner, J. C. H., Hosseini, M. R., & Rameezdeen, R. (2014). "Building Information Modelling ( BIM ) Education in South Australia : Industry Needs" (pp. 293–302).

Gier, D. M. (2015). Integrating Building Information Modeling (BIM) into Core Courses within a Curriculum : A Case Study. International Journal of Engineering Research and General Science, 3(1), 528–43.

Shang-Hsien Hsieh, Amarnath CB & Yuan-Hao (2015). On Teaching BIM technology in Civil Engineering. In proceedings of International Conference on Innovative Production and Construction (IPC 2015). 28th-31st July 2015, Perth, Western Australia, Australia.

Succar, B. and Sher, W. (2013). "A Competency knowledge-base for BIM learning". In proceedings of Australasian Universities Building Education (AUBEA2013), Auckland, New Zealand, November 20-22, 2013.

Underwood, J., & Ayoade, O. (2015). "Current Position and Associated Challenges of BIM education in UK Higher Education".


Acknowledgements

I am thankful to Prof. Shang-Hsien Hsieh for his support throughout this research process. I like to thank Soumo Bose and Rikrey Rechil Marak (Active members, IBIMA) for their contributions in content editing of this article. And, special thanks to my parents for their constant support in life.

About the Author

Dr. Amarnath Chegu Badrinath is a Change Agent for Digital Built and BIM Adoption in Indian AECO Sector. He is the Founder and President of the National BIM Society - India Building Information Modelling Association. Over the course of his career, he held positions as Researcher Assistant, Assistant Professor, Entrepreneur and Advisory in India, Taiwan, Spain and UK. He has research experience of nine years in the field of BIM and Digitalization at Indian Institute of Technology Delhi, National Taiwan University, Imperial College London and University of Barcelona combined. He has participated in few international conferences published journal papers and book chapters in this area. His key research focus is on two directions i.e. Establishing BIM project strategies; and BIM education & training. And these two directions merge with what can be considered the main shortage in India Construction Policies: how BIM can help the huge amount of new infrastructure and building projects and how BIM would have to be introduce in the learning plans and syllabus of all AECO universities. He is an Advisory Member for EU BIM Observatory and BIMCrew. Country Editor (India) for BIM Dictionary – BIMe initiative. Member of CIOB, ASCE & RICS. Editorial team member for IJM&P journal and ISCCCBE technical committee member. Dr. Amarnath CB is playing an active role as an Advisory Member for several Digital Built India initiatives and he can be contacted through Linkedin, Facebook, ResearchGate, Skype: amarnath@caece.net, Mob: +91 9686623376


393 views0 comments

Recent Posts

See All
bottom of page